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INTRODUCTION

To compare the measured bidirectional reflectance distribution function (BRDF) of a rough surface
to the results of a computation, we have to take into account the aperture of the detector and, more
generally, the properties of the measuring instrument.  We either integrate the computed angular
distribution of the scattered intensity over the solid angle subtended by the detector or convolve the
angular distribution with the measured instrument signature.  Effects due to the detector are most
important when the specular beam is large compared to the diffuse scattering intensity and is in-
cluded in the light gathered by the detector.  We also have to perform such an integration to average
over the variations of the scattered intensity due to speckle.  We first consider a one-dimensionally
rough surface and then we extend the methods to the more general isotropic, rough, flat surface.
The angular distribution of the scattered light intensity is proportional to the BRDF multiplied by
the cosine of the scattering angle.  We usually normalize the computed values of the scattered light
intensity by matching the peak intensity in the specular direction to the measured value.  The abso-
lute intensity of the scattered light is difficult to compute, especially when the surface is not per-
fectly conducting.  Windowing effects have to be included in the computation of the field ampli-
tudes in the Kirchhoff approximation.

ONE-DIMENSIONALLY ROUGH SURFACES

We assume that the surface and the incident light beam extend to infinity in the y-direction and that
the scatterer is invariant under displacements in that direction.  The angular distribution of the scat-
tered light as a function of the scattering angle, I( ), can be computed from a simulated or measured
surface topography map using, for instance, the Kirchhoff approximation applied to the scalar wave
equation [1].  The light collected by a detector that subtends an angle 2  is then proportional tod

where n � /  � ½.  We are approximating I( ) by a constant over each interval , which mayd

not be a good approximation where this function varies rapidly, mainly near the specular direction
when a specular beam is significant.  To improve the accuracy, we subdivide some of the intervals
and recompute the integral, continuing until the change in the integral is below a given threshold. 

Actual detectors are circular instead of extending to infinity in the y-direction.  In a one-dimensional
scattering problem, the direction of propagation of the scattered light lies in the xz-plane, which is
not exactly true for the measured intensities.  We have to measure the light scattered slightly off that
plane and add the contributions, as discussed in [2], to improve the agreement between measured
and computed intensities.

ISOTROPIC RANDOM ROUGH FLAT SURFACES

Similar considerations apply to the scattering by a flat surface that is rough in two dimensions.  The
electromagnetic field amplitude of the light scattered by a surface z = (x,y) in the Kirchhoff ap-
proximation using a windowing function, W(x,y), is



( ,�) � [F3( ,�)�A]� W(x,y)exp[i�v( ,�) ��x(x,y)]dxdy ,
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           Fig. 1.  Signature of STARR

where  is the illuminated surface, A is the corresponding area, and, if  is the angle of incidence,i

The scattered intensity is a function of the polar and azimuthal angles, and the light scattered into a
detector defined by a solid angle  is given byd

which generalizes (1).  A rotation in the coordinates that brings the ( ,�) direction to the z-axis is
helpful in determining the angles where the intensity has to be computed to cover the solid angle of
the detector.  If the measurements are restricted to the plane defined by � = 0� and � = 180�, we
can assume that the specular peak is symmetric about the specular direction to simplify the integra-
tion for the light scattered in the specular direction and obtain

Such an approximation is more difficult to justify for an arbitrary position of the detector.  The sine
factor in the element of solid angle is approximately equal to 1.

CONVOLUTION WITH THE INSTRUMENT SIGNATURE

The instrument signature
is obtained by measuring
the light intensity detect-
ed in the absence of a
sample or with a sample
that is a nominally perfect
mirror for different angles
of incidence.  The illumi-
nated surface is deter-
mined by the size of the
incident beam, which is
subsequently focused on
the detector.  The signa-
ture also reflects the aper-
ture of the detector.
When the detector is plac-
ed in the direction of the
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         Fig. 2.  Field intensities near the specular peak.

incident (or specular) beam, essentially all the light is collected.  As the detector is displaced, the
measured intensity remains constant until the edge of the detector cuts off part of the beam.  Then it
decreases gradually until no part of the beam is collected by the detector.  The intensity is reduced to
approximately one half of the maximum when the center of the beam reaches the edge of the detec-
tor.  Light scattered by other surfaces inside the instrument also affects the instrument signature in
the form of stray light.  In Fig. 1 we show the instrument signature for the NIST spectral tri-function
automated reference reflectometer (STARR) [3] measured with a mirror in place for a direction of
incidence of 20� and 60�, normalized to 1 in the specular direction, compared to the signature taken
in the absence of a sample.  We can represent this signature or response function by ,
where  and � define the position of the detector and � and �� define the direction of the incident
light in the absence of a target, or the specular direction if the sample is a perfect mirror.  Then the
measured intensity can be expressed as an integral of the computed intensity scaled by the instru-
ment signature, that is,

where the subindex 4 refers to the number of arguments and  is the solid angle over which the
incident beam can be varied in the determination of the signature.  We can assume that the signature
is independent of the direction of incidence, that is, that only the relative positions of the detector
and the beam matter, whence   If we can only measure the

instrument signature along a fixed plane, we obtain a response function I ( ).  Then (7) reduces tor

Using the range [� ½ ,½ ] for the polar angle  and a fixed azimuthal angle � is equivalent to using
the range [0,½ ] for   and both � and � +  for the azimuthal angle.  The integration carried out
according to (8) is usually called a convolution, although the range of integration is finite.  If we
assume that we have computed I( ) and measured I ( ) for �½  �  � ½ , the limits of integrationr

are  = max(�½ ,�½  � ) and  = min(½ ,½  + ).  In practice, measurements cannot be carried1 2

out very close to grazing angles.  The most important effects of this integration are to flatten the top
of the curve and to smooth the oscillations due to speckle.  If the signature consists of a sharp peak
and can be  represented
by a -function, we find
from (8) that ( ) = I( ).

The assumption that the
integrand remains con-
stant in each interval 
in the numerical evalua-
tion of the integral in (8)
is a reasonable approxi-
mation, in spite of the
variations due to the exis-
tence of speckle, except
for detector positions near
the specular value if the
roughness is small
enough to produce an
identifiable specular
beam.  In this case we
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should subdivide those intervals to the side of the specular direction and average the computed
values.  One can check how much the value changes by subdividing the interval and calculating new
simulated intensities to decide whether further subdivision is necessary.  The main difference is
obtained for the average value including the peak itself, as those in the neighborhood of the peak
will be unchanged if the curve is nearly linear.  The effects of the averaging for a very smooth sur-
face (rms roughness of ~2.6 nm compared to the wavelength of light of 550 nm) can be seen in Fig.
2 for angles near the specular direction.  The field intensities were computed using (2) for a mea-
sured surface topography map, and the averaging reduces the peak intensity by approximately one
third.  Results of other calculations can be found in [4]. 

WINDOWING FUNCTIONS

We have to take into account a real or fictitious intensity profile of the beam in the calculation of the
scattered amplitude using (2).  A windowing function W(x,y) equal to 1 over the region of integra-
tion represents a square window, which corresponds to an incident field that has jump discontinu-
ities at the edges and vanishes outside the illuminated area.  As a consequence of these approxima-
tions the computed amplitude decreases slowly as a function of angle, essentially as a sinc function
for smooth surfaces.  We thus have to use a more realistic shape for the incident beam in the calcu-
lation.  For isotropic rough surfaces we have used a windowing function that is the product of two
Schwartz functions, which are infinitely differentiable and of compact support.  This function was
found to yield good results for sinusoidal surfaces that have cylindrical symmetry [5].  The disconti-
nuities in the function of the first derivative of other windowing functions can cause problems simi-
lar to those of a square window.

CONCLUSIONS

To compare a computed BRDF or intensity distribution to a measured one we have to consider at
least three issues beyond the computation of the intensity as a function of scattering angle: the con-
volution with the instrument signature, averaging over intervals to take into account the specular
peak and speckle, and the inclusion of a windowing function in the Kirchhoff approximation.  Inte-
gration over the detector aperture can replace the convolution with the instrument signature.
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